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Abstract—In this paper, the results of implementing a harmonic
balance simulator, AGILE, on a variety of massively paral-
lel computers (MPC’s) is given. Descriptions of the computer
hardware, which includes both shared-memory and message-
passing implementations, and algorithms used to parallelize the
computations are presented. The computers used include the CM-
5, KSR-1, and a networked set of nonheterogeneous workstations
using UNIX RPC. A key aspect is the description of the variety
of algorithms used for each computer and the results obtained.

Index Terms—Harmonic balance, parallel simulation.

I. INTRODUCTION

AMASSIVELY parallel computer (MPC) is one which
contains a great many individual communicating proces-

sors [typically callednodesor processing elements(PE’s)].
Typical MPC’s allow for tens to several hundred or even
thousands of nodes, and thus in principle offer the ability to
apply a large amount of computational power and memory
to a problem. A key barrier, however, is the development
of software and algorithms which efficiently exploits such
hardware. Note that the focus here is onparallel computation
and not vector computation—in vector computation special-
ized hardware, along with associated programming language
interfaces or software libraries, is provided which can apply
an operation(s) to an array or matrix of data (usually floating
point) faster and more efficiently than an equivalent looping
construct in an application language. While vector hardware
can provide speed-ups, there is an inherent limitation in the
speed-up possible. This is due to several factors.

First, the speed of the microprocessor’s internal floating-
point unit versus that of a specialized vector hardware board
might be relatively fixed (say between 2–10 times) given
equivalent digital fabrication processes/technologies. Dramatic
gains of vector implementations made in the past could mostly
be attributed to a situation where a much larger ratio was
present (perhaps up to 100 times), but this was at a time
when floating-point units could not be implemented directly on
central processing unit (CPU) chips. With current very large
scale integration (VLSI), microprocessor floating-point units
are not really hardware constrained, and thus their floating-
point computation speed is comparable to that of a specialized
unit (perhaps it is even better since data does not need to
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be driven on and off chip). Secondly, the potential advantage
of vector processing inknowing that a series of data is to
be operated on has been largely eroded with pipelined CPU
implementations and compiler advances in loop optimizations.
Thirdly, vectorization is only applied to floating-point array or
matrix operations and does not impact any other aspect (e.g.,
model evaluation) of the program.

Previous work on parallel circuit simulation implementation
differs in a variety of ways. For example, a common portable
library which operates over a variety of MPC’s was used in [1].
This approach is appealing from a portability perspective but
does not allow computer-targeted algorithmic optimizations.
Several authors have investigated the difficult problem of
solving linear matrices on MPC’s (e.g., [2]) which arise in
simulation, but they generally do not obtain speed-up scaling
in concert with the number of computational nodes available.
Attempts to create special-purpose parallel hardware for circuit
simulation (e.g., [3]) ultimately cannot keep pace with general-
purpose computing technology. Thus, the effort in this paper
focuses on custom-developed algorithms tailored for each sys-
tem under consideration. The aim is to assess the upper bounds
of performance, minimization of communication overhead,
etc., that are possible on MPC’s. Other microwave-circuit or
electromagnetic simulation studies using parallel computers
(e.g., [4], [5]) did not explicitly focus on investigating various
algorithmic approaches on a variety of MPC’s.

AGILE’s1 [6], [7] harmonic-balance simulation entails sepa-
rating the circuit into linear and nonlinear portions, assignment
of initial harmonic voltages, andbalance iterations which
adjust harmonic voltages until an acceptably small error,
defined as the difference between computed harmonic currents
from the linear circuit and nonlinear devices, is reached.
Although the nonlinear balance iterations sometimes consume
a significant portion of execution time, as circuit sizes grow the
tendency is for the analysis of the linear portion to dominate
overall execution time. Specifically, the execution time for the
nonlinear balance portion of the solution tends to grow linearly
in the number of nonlinear devices for two prime reasons.
First, each nonlinear element has a fixed, small number of
connection points (e.g., a three-terminal transistor model) and
secondly, nonlinear devices may not be strongly interacting or
coupled to one another (there are obvious exceptions to this,
of course). The linear solution portion, however, is generally
of cubic order as this entails matrix inversion. Thus, the aim
is to parallelize the linear portion of the solution.

1The serial version of AGILE is available on the Web at
http://horse.arl.mil/AGILE/ .
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In general, a goal for parallelizing software is to maximize
the granularity, which refers to theamountof computation
being performed within each node between communications to
other nodes or the host. Here, one would like large granularity,
which minimizes communication among nodes/host, andload
balance which means that each node’s computational load
is approximately equal. As stated, the study in this paper
parallelizes the linear portion of the harmonic-balance routine,
where the parallelization was done such that multiple frequen-
cies of analysis were divided equally for separate (parallel)
computation. This is a relatively large granularity in that
model evaluation, matrix fill, and matrix reductions are all
parallelized. Note that this provides for load balancing as each
node is doing almost the same amount of work (although
there can be slight variations, e.g., due to frequency-dependent
branches in models).

II. GENERALIZED HARDWARE

DESCRIPTIONS ANDDEFINITIONS

The terms single instruction multiple data (SIMD) and
multiple instruction, multiple data (MIMD) are encountered
when referring to parallel computers. In a SIMD approach,
all of the parallel computing nodes are executing the same
instruction sequence (or nearly so) on different data, while in a
MIMD approach each node executes its own instruction stream
on its own data. The attractiveness of the SIMD approach
lies in the hardware simplicity and potentially greater ease
of programming since all nodes are restricted to running
the same code, but this simplicity is only possible assuming
that the problem at handstrongly fits this computational
model. Although SIMD MPC’s are still produced, especially
for specialized embedded applications like image processing,
the MIMD approach is currently favored for general-purpose
parallel computing. The implementations discussed here are
all using MIMD-type MPC’s.

Two major parallel computer-implementation schemes serve
to classify MPC’s as eithershared-memoryor message-
passing. In a shared-memory MPC, each computational
node or PE has access to data memory locations which are
accessible as memory locations to other nodes. A shared-
memory computer might be implemented with a single
memory as in Fig. 1(a) or in other ways. A shared-memory
MPC would usually have local, privately available memory
shown as dotted lines in Fig. 1(a) in addition to shared
memory as is the case for the KSR-1 MPC discussed below.
Communication among the nodes occurs via each accessing
the shared memory (e.g., a node writes data, sets a flag
indicating its presence, and another node reads the data
and unsets the flag). In message-passing MPC’s, each node
has only a local memory available and each node explicitly
communicates with others by sending and receiving messages
through a communication mechanism. Fig. 1(b) shows abus-
style communication implementation, where every node can
directly communicate with any other, while Fig. 1(c) shows
an array style where nodes can only directly communicate
with its neighbors (nonneighbor communication might be
handled by allowing messages to pass through each other). As

Fig. 1. Various configurations of parallel computers distinguished by how
PE’s or nodes communicate. (a) Shared memory. (b) “Bus-based” mes-
sage-passing. (c) “Array-based” message-passing.

is to be expected, the underlying communication mechanism
affects the efficacy of the MPC for a particular application
problem. The block diagrams shown in Fig. 1 are necessarily
simplified but are sufficient for purposes here (see [8] for
further details). As a further distinction, insymmetricMPC’s
all nodes are completely equivalent, and, for purposes here,
an asymmetricMPC is one where a particular node (called
thehost) is the only one capable of some particular operation,
for example performing input/output (I/O) with the user or
disks.

III. I MPLEMENTATION DETAILS AND ALGORITHMS

The algorithmic methods developed for each MPC were
tailored and optimized in accordance with its features in order
to extract maximum benefit from the machine, keeping in mind
that the level of parallelization is limited by the number of
frequencies analyzed. However, typical cases (as those shown
below) usually entail tens to hundreds of frequencies and thus
the approach provides for a high degree of parallelization.
Three implementations, two on large, commercial MPC’s and
the third on a local network of workstations, are presented.
The commercial MPC’s used, namely the Kendall Square
Research KSR-1 and the Thinking Machines CM-5, both allow
for partitions. Partitions divide the overall machine into a
set of independent smaller machines. Since none of the test
cases used more than 24 frequencies, and since all KSR-1
runs were performed in a partition of 32 nodes and all CM-
5 runs were in partitions with at least 24 nodes, each node
computed a single frequency point although the software is
generalized to allow assignments of multiple frequencies per
node.

Fig. 2 shows the flow of control for the KSR-1 using
pthreads [9]. Note that time on the horizontal axis is not
to scale in Figs. 2 and 3, and that each computational node
occupies a position on the vertical axis. One of the nodes
acts as a host program (which can equivalently reside on any
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Fig. 2. Detailed execution sequence for the KSR-1. Times shown are not
to scale.

Fig. 3. Abstract execution sequence for the CM-5. Times shown are not to
scale. The finalup arrow indicates aCMMDsend() to halt.

node in the partition since the KSR-1 is a symmetric MPC)
which uses calls topthread create() with appropriate
arguments to start additional (parallel) processes. The KSR-1
is a shared-memory MPC and each pthread has access to both
globally defined data and to private or local data as well. In
the case of the KSR-1, the compiler automatically determines
which variables are global and which are local based on the
block structure of the program near thepthread create()
code. While this made porting of the software quite simple,
there are ramifications which will be discussed later in the
paper.

Theuprightdirectional arrows in Fig. 2 indicate the creation
of a parallel process usingpthread create() in the
figure. Each frequency is assigned its own pthread and each
computes independently (in parallel). Since memory is shared,
all of these threads have access to the netlist description
and other state information which was established prior to
their creation. At the end of the computation, a structured
array is updated with the reduced admittance matrix. Recall
that this computation entails model evaluation, matrix-fill,
and subsequent reduction for the frequency(s) assigned to the
node. As these results become available, they must be stored
into a structured array, exactly like the serial version of the
code. In order to avoid simultaneous memory writes from
each pthread (even though each is writing to a different array
element, the array in whole is considered a single data object
in terms of the shared memory), amutex is used. A mutex
provides sequential (sole) access to shared data, the hashed

sections of the figure show each parallel computational node
locking the mutex, writing the data, and then unlocking. This
operation, of course, is mutually exclusive (hence the name,
mutex) across the nodes and the figure captures this fact (e.g.,
the idle time of waiting for )—the need for mutexes
is typical of shared-memory parallel code implementations.
Immediately after spawning each thread,pthread join()
is called. This creates abarrier point in the program—the
main program does not continue until all the joined threads
(e.g., each parallel computation) are complete. In Fig. 2,
all joins are complete at the point of the last downright
arrow.

The method used on the asymmetric CM-5 is quite different
and uses asynchronous message-passing as implemented in
the CMMD library [10]. In Fig. 3, tagged messages (which
include data) are shown passing between nodes and host.
The process starts by having the hostbroadcast the netlist
(a broadcast is a message which is sent simultaneously to
all nodes); each node then parses it, and performs necessary
memory allocations. This establishes the common state needed
by all of the computational nodes such that they can each
participate in a common computation—this step is not nec-
essary in the KSR-1 implementation since all parallel nodes
have direct access to the netlist, instance hierarchy, etc., due
to shared memory. Each CM-5 node then sends a message
FREEWORKERwhich is (eventually) read by a dispatch loop
on the host informing it that it is available for assignment.
The host dispatches theSTARTWORKmessage which includes
the frequency assignment (102 bytes total, indicated as “f” in
the figure). At the end of computation (once again including
model evaluation, matrix-fill, and reduction), the node sends
a message with tagRESULTAVAIL which also contains the
reduced matrix result (1612 bytes indicated as “r”). Finally
the host sends theSTOPWORKmessage to halt the node. For
simplicity, Fig. 3 shows this process for only a single node,
but of course this process is happening in parallel for all nodes.
As mentioned earlier, in the cases shown below, each node has
only one frequency to compute.

Also note that the messages are passedasynchronously; a
message queue is depicted in the figure to which messages
are posted and picked up to capture this fact. The alter-
native is synchronousmessage-passing which requires that
both sender and receiver wait for each other to reach tag-
matched communication calls. Synchronous message-passing
is usually simpler from a programming point of view since
at the point of communication the sender and receiver of the
particular message are known to each be at their respective
communication routine calls at that time point (often referred
to as a rendezvous). However, unless code execution time
between communication calls is extremely balanced, one of the
senders or receivers will arrive at its respective communication
call before the other and will have to wait (also known as
block) for the other to reach its communication call. Assuming
that the data being sent is not immediately needed, this can
cause unnecessary delays in overall execution. In the case
here of independent frequency analyses, it does not matter
which result is available first, the host continues on only
after all frequency results have been returned. Even though



590 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

the computation is, in principle, highly load balanced, it is
certainly possible to encounter far from ideal circumstances.
For example, suppose that all of the model evaluations for
the first frequency are, say, ten times longer than at other
frequency points and that the matrix fill and reduction times
are much less than the model evaluation time. In such a
case, if synchronous communication were used to receive
the reduced matrix data in frequency-order (which, along
with the assumption of load balance, would be the correct
assumption since they are issued in frequency order) the host
would (unnecessarily) block the receipt of the other-than-first
frequency results since it would be waiting to receive the first
result while all of the others have already been finished and,
hence, available for receipt. Synchronous communication in
the code here would also prevent the assignment of another
computation (e.g., another frequency point) to the nodes which
complete earlier. Thus, asynchronous message-passing is used
throughout the implementation. Fig. 3 captures possible de-
lays between the asynchronous send/receive by using curved
segments in themessage queue.

In addition to the MPC parallel versions, the use of a UNIX
RPC on a local area network of heterogeneous workstations
was used to form an asymmetric parallel computing capability
[11]. An UNIX daemon calledagilerd was registered as an
RPC program and ran on several workstations. This daemon
performed exactly the same job as the node programs of
the CM-5 version, including the sizes of data being passed.
Namely, it received and parsed the netlist, evaluated com-
ponent models, and filled and reduced the matrix. The only
logical difference was that broadcasting of the netlist was not
used, but each node was sent this information in individual
messages. Thus, Fig. 3 can be used to visualize the data
communications for the RPC version with the exception that,
instead of the broadcast, each node is sent the netlist in separate
transmissions—this is due to the fact that only point–to–point
message-passing is available. The RPC version of the program
is run on a host workstation which also has a list of other
workstations (computational nodes) on which it expects the
agilerd daemon to be available. This eliminates the need
for FREEWORKERcommunication and furthermore, as the
remote daemons do not need to be stopped, the need for
STOPWORKmessages is also eliminated. This daemon was
ported to both Sun SparcStations and HP 700 workstations,
forming a nonheterogeneous computational capability. For
consistency of data analysis, however, RPC case results are
presented using equivalent Sun SparcStations only.

IV. RESULTS

Three microwave circuits of varying sizes were used as
the basis for testing the implementations. The first, called
test1 , is composed of a main circuit utilizing three in-
stances of one parametric subcircuit, FET_SRL2, and a single
instance of another, FET_EE. The main circuit has 45 lo-
cal components and 35 circuit nodes (not to be confused
with computational nodes) while FET_SRL2 has a single
component and one internal circuit node and FET_EE has
nine components and two internal circuit nodes. Although

TABLE I
AVERAGED RAW DATA (SECONDS)

AGILE takes advantage of hierarchy in its analysis, if this
description were flattened, it would comprise 75 components
and 44 circuit nodes. The second circuit is calledtest2 .
It has a similar descriptive organization astest1 , but is
larger. If flattened, it would have 106 components and 86
circuit nodes. The final description is calledtest3 . It is much
larger thantest2 , utilizing 63 parametric circuit descriptions
which, if flattened, represent 1076 components and 798 circuit
nodes.

These circuits represent a spread in complexity/size from
moderate to fairly large. Note thattest3 is a complete
description of a moderately sized two-stage monolithic mi-
crowave integrated circuit (MMIC) amplifier, whiletest1
and test2 are different implementations of a low-noise
amplifier (LNA). Each circuit was analyzed at 24 frequencies.
Detailed execution times for the parallel versions are shown
in Table I. Note thattest3 data for the RPC version is not
available. In each case, the times referred to asset up rep-
resent the time needed to prepare for the parallel computation
with respect to each of the implementations developed. The
time rc represents the amount of computation performed by
a node without inclusion of communication time; that is, it
is the amount of productive computation performed directly
on a node. In each case, all noderc times were monitored,
and the average over multiple runs of the longest of these is
presented asworst rc in the table. The time,f total , is
the amount of time for the frequency loop portion of parallel
computation from the host’s perspective. This does not include
set up time and thus the total time (in this portion of the
program) isset up f total . These timings can be used
to assess the efficacy of the parallelization and algorithms
used.

It is important to note that for the RPC version, only
two computational nodes (and separate host) are employed
and, hence, each is analyzing 12 frequency points, whereas
for the MPC’s, each node is analyzing just one. From the
worst rc data, it can be seen that the computational power
of all MPC/RPC nodes is approximately equal; for example,
the worst rc ’s for the test1 circuit are 0.247, 0.230, and
0.228 (2.731/12) s for the KSR-1, CM-5, and RPC node (Sun
SPARC), respectively. Each data point presented in Table
I was averaged from five runs; for the KSR-1 and CM-5,
commands were used to ensure that no other users were using
the partition helping to ensure fair timing results. Also recall
that the test3 problem was not run on the RPC version
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TABLE II
PARALLEL EFFICIENCY

and, hence, related results are not available. Theagilerd
daemon was “killed” before each run—since dynamic memory
allocation using malloc is used extensively, this prevented
data “free’s” from a previous run from counting in the timing
analysis.

In this paper, one is mostly interested in determining com-
munication overhead and preferred approaches. To estimate
communications overhead, a definition for parallel-efficiency
(P), is given as

P (1)

The amount of time from the host’s (or user’s) perspective is
f total , while the longest node computation isworst rc ,
so that the P factor captures the ratio of useful node compu-
tation versus host elapsed time in the frequency loop. Table
II shows the evaluation of P for the times shown in Table I.
Except for the drop fortest3 on the KSR-1 (the 0.64 figure),
the general trend to increased efficiency for larger granularity
is witnessed—that is as the size of the problem increases
(from test1 to test3 ), the parallel efficiency improves.
On the CM-5, the larger-sized problems enjoy a 97% (0.97)
efficiency, which implies that, from the host’s perspective,
only 3% of the overall frequency loop time is spent in
communications. For the RPC version, a separate timing test
was done which determined that RPC communication (on the
local area network used) takes about 300 ms. This rather
large factor reflects itself in the poor efficiency on the smaller
problem (test1 ). As expected, the situation improves for the
larger problem (test2 ) just due to the larger granularity of
the computations.

KSR-1 results are more difficult to explain. As should be
expected, P increases from 0.29 to 0.77 fortest1 andtest2
problems, but then inexplicably decreases somewhat to 0.64
for the largertest3 problem. Notice that while theset up
times fortest1 andtest2 are comparable between the CM-
5 and KSR-1, this is not the case for thetest3 problem (from
Table I). On the other hand, theworst rc for test3 , as well
as for the other problems, are comparable between the KSR-1
and the CM-5. The conclusion then, is that the KSR-1 requires
a relatively larger time to do thepthread create() ’s
which is basically the only code executed as part of the
set up time, for the test3 problem—but the question
is “why?” One of the only differences is that the actual
executable image for AGILE when running larger circuits is
progressively larger, as dynamic memory is allocated based
on need. A large executable image size at the point of pthread
creation indeed appears to be the difficulty that the KSR-1 has
with test3 . Since the compiler fully automates allocation
of data to shared or (pthread) local memory, there is not
much that can be done to alleviate this situation. Note that

TABLE III
ELAPSED TIMES (SECONDS)

the goal here was to contrast shared-memory and message-
passing implementations; it might be expected that the KSR-1
would perform as well as the CM-5 if its message-passing
capabilities were used.

V. CONCLUSION

From a user’s perspective, elapsed run time is what is
important. Table III shows the elapsed times (for this portion
of the program) for each of the parallel implementations and
a serial version running on a Sun SparcStation-II (with 16
megabytes); note that the elapsed time shown for each parallel
version isset up f total . With the exception oftest1
on the RPC version, each of these is clearly superior to the
serial version.

For simplicity in programming, the shared-memory model is
superior in terms of ease of development and the level of assis-
tance provided by the compiler, and this model achieves rea-
sonable parallelization efficiencies (at least for this problem).
The message-passing versions on the other hand required quite
a bit of code changes, development of nonhost node or dae-
mon programs, etc. However, custom-programmed message-
passing appears superior from a performance perspective, even
at the level of a local area network of workstations (RPC
version) when the problem is large enough to overcome a
high communication time delay.
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