IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997 587

Parallel Computation for Microwave
Circuit Simulation

David L. RhodesMember, IEEE,and Barry S. Perlmarkellow, IEEE

Abstract—n this paper, the results of implementing a harmonic be driven on and off chip). Secondly, the potential advantage
balance simulator, AGILE, on a variety of massively paral- of vector processing irknowingthat a series of data is to
lel computers (MPC's) is given. Descriptions of the computer be operated on has been largely eroded with pipelined CPU

hardware, which includes both shared-memory and message- . | tati d i d in| timizati
passing implementations, and algorithms used to parallelize the IMPIEMENtAtoNs ana compiler advances in 100p optimizations.

computations are presented. The computers used include the CM- Thirdly, vectorization is only applied to floating-point array or
5, KSR-1, and a networked set of nonheterogeneous workstations matrix operations and does not impact any other aspect (e.g.,
using UNIX RPC. A key aspect is the description of the variety model evaluation) of the program.
of algorithms used for each computer and the results obtained. preyious work on parallel circuit simulation implementation
Index Terms—Harmonic balance, parallel simulation. differs in a variety of ways. For example, a common portable
library which operates over a variety of MPC’s was used in [1].
This approach is appealing from a portability perspective but
I. INTRODUCTION does not allow computer-targeted algorithmic optimizations.

MASSIVELY parallel computer (MPC) is one whichSeveral authors have investigated the difficult problem of

contains a great many individual communicating proceS0IVing linear matrices on MPC's (e.g., [2]) which arise in

sors [typically callednodesor processing element@E's)]. simulation, but they generally do not obtain speed-up scaling
Typical MPC'’s allow for tens to several hundred or evelf concert with the number of computational nodes available.

thousands of nodes, and thus in principle offer the ability l%_ttempts to create special-purpose parallel hardware for circuit

apply a large amount of computational power and memoﬂ;nulation (e.g., [3]) ultimately cannot keep pace with general-

to a problem. A key barrier, however, is the developmefHrPOSe computing technology. Thus, the effort in this paper
of software and algorithms which efficiently exploits sucfiocuses on custom-developed algorithms tailored for each sys-

hardware. Note that the focus here isarallel computation tem under consideration. The aim is to assess the upper bounds

and not vector computation—in vector computation specidlf Performance, minimization of communication overhead,
ized hardware, along with associated programming languaf§-» that are possible on MPC’s. Other microwave-circuit or
interfaces or software libraries, is provided which can appfjectromagnetic simulation studies using parallel computers
an operation(s) to an array or matrix of data (usually floatif§-9-» [4]: [5]) did not explicitly focus on investigating various
point) faster and more efficiently than an equivalent loopi gorlthmylclapproaches on a variety of MPC's. ,
construct in an application language. While vector hardwareAGILE'S” [6], [7] harmonic-balance simulation entails sepa-
can provide speed-ups, there is an inherent limitation in tf@ting the circuit into linear and nonlinear portions, assignment
speed-up possible. This is due to several factors. of initial harmonic voltages, andbalance iterations which
First, the speed of the microprocessor's internal floatingdiust harmonic voltages until an acceptably small error,

point unit versus that of a specialized vector hardware bodigfined as the difference between computed harmonic currents

might be relatively fixed (say between 2-10 times) givefﬁom the linear circuit and nonlinear devices, is reached.

equivalent digital fabrication processes/technologies. Dramaftiinough the nonlinear balance iterations sometimes consume
gains of vector implementations made in the past could mosfhyignificant portion of execution time, as circuit sizes grow the
be attributed to a situation where a much larger ratio wigndency is for the analysis of the linear portion to dominate
present (perhaps up to 100 times), but this was at a tirRuerall execution time. Specifically, the execution time for the

when floating-point units could not be implemented directly oponlinear balance portion of the solution tends to grow linearly
jg the number of nonlinear devices for two prime reasons.

central processing unit (CPU) chips. With current very IardE_ ’ s
scale integration (VLSI), microprocessor floating-point units™St: €ach nonlinear element has a fixed, small number of

are not really hardware constrained, and thus their floating2Mnection points (e.g., a three-terminal transistor model) and
point computation speed is comparable to that of a specializZgFOndly, nonlinear devices may not be strongly interacting or

unit (perhaps it is even better since data does not needCRy'pled to one another (there are obvious exceptions to this,
of course). The linear solution portion, however, is generally

Manuscript received March 1, 1996; revised January 24, 1997. This wddt cubic order as this entails matrix inversion. Thus, the aim
was supported in part by a grant of HPC time from the following DoD Shargg to parallelize the linear portion of the solution.
Resource Centers: the Army HP Computing Research Center and the Army
Research Laboratory Super Computer Facility.
The authors are with the Army Research Laboratory, Sensors and Electron-
ics Directorate, Fort Monmouth, NJ 07703 USA. 1The serial version of AGILE is available on the Web at
Publisher Item Identifier S 0018-9480(97)02911-6. http://horse.arl.mil/AGILE/

0018-9480/97$10.001 1997 IEEE

588 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

In general, a goal for parallelizing software is to maximize [Message Communication |
the granularity, which refers to theamountof computation Shared | T T
being performed within each node between communications to Memory pEllPE| ... IPE
other nodes or the host. Here, one would like large granularity, | p— o -
which minimizes communication among nodes/host, laad ~ [__Memory Access Interface | [memo ki
balance which means that each node’s computational loagt I ! I (b) “Bus-based” Message-Passing
is approximately equal. As stated, the study in this paperPE PE | = | PE
parallelizes the linear portion of the harmonic-balance routineh‘;'fwy;: ém::iry? §m‘:;ry§ | PE |4 PE —
where the parallelization was done such that multiple frequen-wet) : : (e : D opt - |m_f.i.‘i.1 memory memory
cies of analysis were divided equally for separate (parallel) (a) Shared Memory PE LU PIE
computation. This is a relatively large granularity in that PE| [PE | .
model evaluation, matrix fill, and matrix reductions are all 1. T . :
parallelized. Note that this provides for load balancing as each K N L
node is doing almost the same amount of work (although PE | —_PE |
there can be slight variations, e.g., due to frequency-dependent rmory memory

branches in models). (c) “Array-based” Message-Passing

Fig. 1. Various configurations of parallel computers distinguished by how
PE’s or nodes communicate. (a) Shared memory. (b) “Bus-based” mes-

Il. - GENERALIZED HARDWARE sage-passing. (c) “Array-based” message-passing.

DESCRIPTIONS AND DEFINITIONS

The terms single instruction multiple data (SIMD) and

multiple instruction, multiple data (MIMD) are encounteregs to be expected, the underlying communication mechanism
when referring to parallel computers. In a SIMD approacigfects the efficacy of the MPC for a particular application
all of the parallel computing nodes are executing the sarpgoblem. The block diagrams shown in Fig. 1 are necessarily
instruction sequence (or nearly so) on different data, while insgnplified but are sufficient for purposes here (see [8] for
MIMD approach each node executes its own instruction stredither details). As a further distinction, symmetricMPC's

on its own data. The attractiveness of the SIMD approaghl nodes are completely equivalent, and, for purposes here,
lies in the hardware simplicity and potentially greater eagg asymmetricMPC is one where a particular node (called
of programming since all nodes are restricted to runnifge hos) is the only one capable of some particular operation,

the same code, but this simplicity is only possible assumifgr example performing input/output (I/O) with the user or
that the problem at handtrongly fits this computational gisks.

model. Although SIMD MPC'’s are still produced, especially
for specialized embedded applications like image processing,
the MIMD approach is currently favored for general-purpose
parallel computing. The implementations discussed here aréThe algorithmic methods developed for each MPC were
all using MIMD-type MPC's. tailored and optimized in accordance with its features in order
Two major parallel computer-implementation schemes serieceextract maximum benefit from the machine, keeping in mind
to classify MPC’s as eitheishared-memoryor message- that the level of parallelization is limited by the number of
passing In a shared-memory MPC, each computationflequencies analyzed. However, typical cases (as those shown
node or PE has access to data memory locations which betow) usually entail tens to hundreds of frequencies and thus
accessible as memory locations to other nodes. A shar#lte approach provides for a high degree of parallelization.
memory computer might be implemented with a singl€hree implementations, two on large, commercial MPC’s and
memory as in Fig. 1(a) or in other ways. A shared-memotje third on a local network of workstations, are presented.
MPC would usually have local, privately available memorffhe commercial MPC’s used, namely the Kendall Square
shown as dotted lines in Fig. 1(a) in addition to sharelesearch KSR-1 and the Thinking Machines CM-5, both allow
memory as is the case for the KSR-1 MPC discussed beldar partitions Partitions divide the overall machine into a
Communication among the nodes occurs via each accesset) of independent smaller machines. Since none of the test
the shared memory (e.g., a node writes data, sets a ftagpes used more than 24 frequencies, and since all KSR-1
indicating its presence, and another node reads the datas were performed in a partition of 32 nodes and all CM-
and unsets the flag). In message-passing MPC'’s, each nbdeins were in partitions with at least 24 nodes, each node
has only a local memory available and each node explicitppmputed a single frequency point although the software is
communicates with others by sending and receiving messageseralized to allow assignments of multiple frequencies per
through a communication mechanism. Fig. 1(b) shovisia node.
style communication implementation, where every node canFig. 2 shows the flow of control for the KSR-1 using
directly communicate with any other, while Fig. 1(c) showpthreads[9]. Note that time on the horizontal axis is not
an array style where nodes can only directly communicate scale in Figs. 2 and 3, and that each computational node
with its neighbors (nonneighbor communication might beccupies a position on the vertical axis. One of the nodes
handled by allowing messages to pass through each other).akts as a host program (which can equivalently reside on any

I1l. | MPLEMENTATION DETAILS AND ALGORITHMS

RHODES AND PERLMAN: PARALLEL COMPUTATION FOR MICROWAVE CIRCUIT SIMULATION 589

e . == Computation sectjons of the figure's.how each parallel computatiqnal nqde
Mutex locked locking the mutex, writing the data, and then unlocking. This
b —m Idle time operation, of course, is mutually exclusive (hence the name,
) A——m_ _ pthread_create mutex) across the nodes and the figure captures this fact (e.g.,
L [| pthread_join the idle time ofp, waiting for p;)—the need for mutexes

is typical of shared-memory parallel code implementations.

’ - Legend Immediately after spawning each thre@thread _join()
i A ‘ ‘ : is called. This creates barrier point in the program—the
host NN — main program does not continue until all the joined threads
prms (e.g., each parallel computation) are complete. In Fig. 2,
|<setup>\<— f_total—>{ all joins are complete at the point of the last downright

arrow.
Fig. 2. Detailed execution sequence for the KSR-1. Times shown are notThe method used on the asymmetric CM-5 is quite different
t le. . ; .
0 scae and uses asynchronous message-passing as implemented in
the CMMD library [10]. In Fig. 3, tagged messages (which
include data) are shown passing between nodes and host.

'C % be_from_host The process starts by having the hdsbadcastthe netlist
P T P——) | s Computation a broadcast is a message which is sent simultaneously to
I 3§ | — Idles :
g E : g g x . [dletime all nodes); each node then parses it, and performs necessary
58 LI A CMMD _send memory allocations. This establishes the common state needed
P £ 2 & @ Legend by all of the computational nodes such that they can each
& g

participate in a common computation—this step is not nec-

[N Wewsage Geese N, 7]
A e essary in the KSR-1 implementation since all parallel nodes

v
host — have direct access to the netlist, instance hierarchy, etc., due
time to shared memory. Each CM-5 node then sends a message
setup f total . . .
}(FREEWORKEWRhich is (eventually) read by a dispatch loop
Fig. 3. Abstract execution sequence for the CM-5. Times shown are not@§ the host informing it that it is available for assignment.
scale. The finalip arrow indicates &£MMDsend() to halt. The host dispatches tf®TARTWORKessage which includes

the frequency assignment (102 bytes total, indicated as “f” in

the figure). At the end of computation (once again including
node in the partition since the KSR-1 is a symmetric MPQhodel evaluation, matrix-fill, and reduction), the node sends
which uses calls tgpthread _create() with appropriate a message with taRESULTAVAIL which also contains the
arguments to start additional (parallel) processes. The KSRetluced matrix result (1612 bytes indicated as “r”). Finally
is a shared-memory MPC and each pthread has access to lin¢ghhost sends thETOPWORHKiessage to halt the node. For
globally defined data and to private or local data as well. Bimplicity, Fig. 3 shows this process for only a single node,
the case of the KSR-1, the compiler automatically determinbgt of course this process is happening in parallel for all nodes.
which variables are global and which are local based on tAs mentioned earlier, in the cases shown below, each node has
block structure of the program near thilaread _create() only one frequency to compute.
code. While this made porting of the software quite simple, Also note that the messages are pasagghchronoustya
there are ramifications which will be discussed later in theessage queue is depicted in the figure to which messages

paper. are posted and picked up to capture this fact. The alter-
Theuprightdirectional arrows in Fig. 2 indicate the creatiomative is synchronousmessage-passing which requires that
of a parallel process usingthread _create() in the both sender and receiver wait for each other to reach tag-

figure. Each frequency is assigned its own pthread and eawhtched communication calls. Synchronous message-passing
computes independently (in parallel). Since memory is sharésl,usually simpler from a programming point of view since
all of these threads have access to the netlist descriptiainthe point of communication the sender and receiver of the
and other state information which was established prior t@mrticular message are known to each be at their respective
their creation. At the end of the computation, a structuremmmunication routine calls at that time point (often referred
array is updated with the reduced admittance matrix. Rectil as arendezvous However, unless code execution time
that this computation entails model evaluation, matrix-filhetween communication calls is extremely balanced, one of the
and subsequent reduction for the frequency(s) assigned to skaders or receivers will arrive at its respective communication
node. As these results become available, they must be stocall before the other and will have to wait (also known as
into a structured array, exactly like the serial version of thalocK) for the other to reach its communication call. Assuming
code. In order to avoid simultaneous memory writes froitmat the data being sent is not immediately needed, this can
each pthread (even though each is writing to a different arraguse unnecessary delays in overall execution. In the case
element, the array in whole is considered a single data objbketre of independent frequency analyses, it does not matter
in terms of the shared memory), mutexis used. A mutex which result is available first, the host continues on only
provides sequential (sole) access to shared data, the hasifezt all frequency results have been returned. Even though

590 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

the computation is, in principle, highly load balanced, it is TABLE |

certainly possible to encounter far from ideal circumstances. AVERAGED RAw DATA (SECONDY

For example, suppose that all of the model evaluations for KSR-1 | CM-5 | RPC
the first frequency are, say, ten times longer than at other setup | 0.780 | 0.500 | 0.614

testl | worst_rc 0.247 | 0.230 | 2.731
f_total 0.859 | 0.265 | 5.592

set_up 1.563 | 1.550 | 1.828

frequency points and that the matrix fill and reduction times
are much less than the model evaluation time. In such a

case, if synchronous communication were used to receive test2 | worst.rc || 2.092 | 2.310 | 34.180
the reduced matrix data in frequency-order (which, along ftotal || 2.718 | 2.389 | 38.620
with the assumption of load balance, would be the correct set_up 1167 | 436 [n/a
assumption since they are issued in frequency order) the host test3 | worstrc | 744 | 7.06 | n/a

would (unnecessarily) block the receipt of the other-than-first frotal || 1172 | 7.30 | n/a

frequency results since it would be waiting to receive the first
result while all of the others have already been finished and,
hence, available for receipt. Synchronous communication AGILE takes advantage of hierarchy in its analysis, if this
the code here would also prevent the assignment of anotdescription were flattened, it would comprise 75 components
computation (e.g., another frequency point) to the nodes whiahd 44 circuit nodes. The second circuit is calkedt2
complete earlier. Thus, asynchronous message-passing is Usdths a similar descriptive organization &sstl , but is
throughout the implementation. Fig. 3 captures possible derger. If flattened, it would have 106 components and 86
lays between the asynchronous send/receive by using cure&duit nodes. The final description is callebt3 . Itis much
segments in thenessage queue larger thartest2 , utilizing 63 parametric circuit descriptions

In addition to the MPC parallel versions, the use of a UNIXvhich, if flattened, represent 1076 components and 798 circuit
RPC on a local area network of heterogeneous workstatiansdes.
was used to form an asymmetric parallel computing capability These circuits represent a spread in complexity/size from
[11]. An UNIX daemon calledgilerd was registered as anmoderate to fairly large. Note thaest3 is a complete
RPC program and ran on several workstations. This daemgescription of a moderately sized two-stage monolithic mi-
performed exactly the same job as the node programs gpbwave integrated circuit (MMIC) amplifier, whileest1
the CM-5 version, including the sizes of data being passeghd test2 are different implementations of a low-noise
Namely, it received and parsed the netlist, evaluated cosmplifier (LNA). Each circuit was analyzed at 24 frequencies.
ponent models, and filled and reduced the matrix. The ortetailed execution times for the parallel versions are shown
logical difference was that broadcasting of the netlist was nipt Table I. Note thatest3 data for the RPC version is not
used, but each node was sent this information in individuaVailable. In each case, the times referred teets_up rep-
messages. Thus, Fig. 3 can be used to visualize the daigent the time needed to prepare for the parallel computation
communications for the RPC version with the exception thatith respect to each of the implementations developed. The
instead of the broadcast, each node is sent the netlist in sepatigie rc represents the amount of computation performed by
transmissions—this is due to the fact that only point—to—poiatnode without inclusion of communication time; that is, it
message-passing is available. The RPC version of the progrignthe amount of productive computation performed directly
is run on a host workstation which also has a list of othelnh a node. In each case, all node times were monitored,
workstations (computational nodes) on which it expects th@d the average over multiple runs of the longest of these is
agilerd daemon to be available. This eliminates the negstesented aworst _rc in the table. The timef _total , is
for FREEWORKERommunication and furthermore, as thehe amount of time for the frequency loop portion of parallel
remote daemons do not need to be stopped, the need demputation from the host’s perspective. This does not include
STOPWORHKessages is also eliminated. This daemon wast _up time and thus the total time (in this portion of the
ported to both Sun SparcStations and HP 700 WOkatatiOImEogram) isset _up + f _total . These timings can be used
forming a nonheterogeneous computational capability. Fgy assess the efficacy of the parallelization and algorithms
consistency of data analysis, however, RPC case results gged.
presented using equivalent Sun SparcStations only. It is important to note that for the RPC version, only
two computational nodes (and separate host) are employed
and, hence, each is analyzing 12 frequency points, whereas
for the MPC’s, each node is analyzing just one. From the

Three microwave circuits of varying sizes were used agorst _rc data, it can be seen that the computational power
the basis for testing the implementations. The first, called all MPC/RPC nodes is approximately equal; for example,
testl , is composed of a main circuit utilizing three in-theworst _rc ’s for thetestl circuit are 0.247, 0.230, and
stances of one parametric subcircuit, FET_SRL2, and a singl@28 (2.731/12) s for the KSR-1, CM-5, and RPC node (Sun
instance of another, FET_EE. The main circuit has 45 IG&GPARC), respectively. Each data point presented in Table
cal components and 35 circuit nodes (not to be confuskdvas averaged from five runs; for the KSR-1 and CM-5,
with computational nodes) while FET_SRL2 has a singleommands were used to ensure that no other users were using
component and one internal circuit node and FET_EE htee partition helping to ensure fair timing results. Also recall
nine components and two internal circuit nodes. Althoughat thetest3 problem was not run on the RPC version

IV. RESULTS

RHODES AND PERLMAN: PARALLEL COMPUTATION FOR MICROWAVE CIRCUIT SIMULATION 591

TABLE 1 TABLE 1l
PARALLEL EFFICIENCY ELAPSED TIMES (SECOND9
KSR-1 | CM-5 | RPC KSR-1 | CM-5 | RPC | Serial
testl || 0.29 | 0.87 | 0.49 testi || 1.64 | 0.77 | 6.21 | 6.1
test2 || 0.77 | 0.97 | 0.89 test2 || 4.28 | 3.94 | 40.45 | 50.4
test3 || 0.64 | 0.97 | n/a test3 || 23.39 | 11.66 | n/a | 107.8
and, hence, related results are not available. agierd the goal here was to contrast shared-memory and message-

daemon was “killed” before each run—since dynamic memopassing implementations; it might be expected that the KSR-1
allocation using malloc is used extensively, this preventedbuld perform as well as the CM-5 if its message-passing
data “free’s” from a previous run from counting in the timingcapabilities were used.
analysis.

In this paper, one is mostly interested in determining com-
munication overhead and preferred approaches. To estimate _) _)
communications overhead, a definition for parallel-efficiency From & user's perspective, elapsed run time is what is

V. CONCLUSION

(P), is given as important. Table Il shows the elapsed times (for this portion
of the program) for each of the parallel implementations and
worst_rc
P= I total " (1) a serial version running on a Sun SparcStation-Il (with 16
_TotTa.

megabytes); note that the elapsed time shown for each parallel
The amount Qf time from the host’s (or usgr’s)_ perspective {gyrsjon isset _up + f _total . With the exception ofestl

f total , while the longest node computationi®rst _rc, on the RPC version, each of these is clearly superior to the
so that the P factor captures the ratio of useful node compysyial version.

tation versus host elapsed time in the frequency loop. Tab|eForsimpIicity in programming, the shared-memory model is

Il shows the evaluation of P for the times shown in Table kperior in terms of ease of development and the level of assis-
Except for the drop fotest3 on the KSR-1 (the 0.64 figure), tance provided by the compiler, and this model achieves rea-
the general trend to increased efficiency for larger granulargynaple parallelization efficiencies (at least for this problem).
is witnessed—that is as the size of the problem increasfige message-passing versions on the other hand required quite
(from testl to test3), the parallel efficiency improves. g pit of code changes, development of nonhost node or dae-
On the CM-5, the larger-sized problems enjoy a 97% (0.9)on programs, etc. However, custom-programmed message-
efficiency, which implies that, from the host's perspectivyassing appears superior from a performance perspective, even
only 3% of the overall frequency loop time is spent iy the level of a local area network of workstations (RPC

communications. For the RPC version, a separate timing t%}sion) when the problem is large enough to overcome a
was done which determined that RPC communication (on thgyn communication time delay.

local area network used) takes about 300 ms. This rather
large factor reflects itself in the poor efficiency on the smaller

problem (estl). As expected, the situation improves for the REFERENCES
larger problem test2) just due to the larger granularity of [1] E. Pajarre, T. Ritoniemi, and H. Tenhunen, “PAR-APLAC: Parallel cir-
the computations. cuit analysis and optimization,” iEuro-DAC’92 Conf. Proc.Hamburg,

KSR-1 results are more difficult to explain. As should be _ Germany, Sept. 7-10, pp. 584-589.

.] K. Mayaram, P. Yang, J. Chern, R. Burch, L. Arledge, and P. Cox, “A
expected, Pincreases from 0.29t0 0.77téstl ~ andtest2 parallel block-diagonal preconditioned conjugate-gradient solution algo-

problems, but then inexplicably decreases somewhat to 0.64 rithm for circuit and device simulations,” itEEE Int. Conf. Comput.-

for the largertest3 problem. Notice that while theet _up Aided Design Santa Clara, CA, Nov. 11-15, 1990, pp. 446-449.
fi fortest1 dtest? ble bet the CM [3] J. O©. Hamblen and C. O. Alford, “A parallel computer architecture for
Imes iortes andates are comparable between the - continuous simulation,lEEE Trans. Aerosp. Electron Sysiql. 24, pp.

5 and KSR-1, this is not the case for tiest3 problem (from 719-725, Nov. 1988.

Table I). On the other hand, theorst _rc for test3 , as well [4] V. Rizzoli, F. Mastri, F. Sgallari, and V. Frontini, “The exploitation of
) ! - ' sparse-matrix techniques in conjunction with the piecewise harmonic-

as for the other problems, are Comp?-rable between the KS_R'l balance method for nonlinear microwave circuit analysis,"|HEE
and the CM-5. The conclusion then, is that the KSR-1 requires Microwave Theory Tech.-S Digvol. 3. Dallas, TX, May 1990, pp.

; ;) 1295-1298.
a relatlvely Iarger time to do th@thread ‘Create() S [5] C. Eswarappa, P. P. M. So, and W. J. R. Hoefer, “Efficient field-based

which is basically the only code executed as part of the " cad of microwave circuits on massively parallel computer using TLM
set _up time, for the test3 problem—but the question and Prony’s method,” inEEE Microwave Theory Tech.-S Digiol. 3.

- A ; ; San Diego, CA, May 1994, pp. 1531-1534.
is “why?” One of the only differences is that the aCtuaI[6] B. Epstein, S. Perlow, D. Rhodes, J. S. Schepps, M. Ettenberg, and

executable image for AGILE when running larger circuits iS ~ R. Barton, “Large-signal MESFET characterization using harmonic
progressively larger, as dynamic memory is allocated based kl)gglce," i%EEElMgrowave Theory Tech.-S DigNew York, May

; ; i . pp. —1048.
on ne_ed'_A large executable image §I_Z€ at the point of pthre R. Barton and D. Rhodes, “Cost minimization via simulation-based
creation indeed appears to be the difficulty that the KSR-1 has meta-modeling,” in1994 US Conf. GaAs MANufacturing TECHnology
with test3 . Since the compiler fully automates allocation (MANTECH),Las Vegas, NV, May 1-5, 1994, pp. 97-100.

.] J. Hennessy and D. Pattersa@pmputer Architecture: A Quantitative
of data to shared or (pthread) local memory, there is nO[F Approach,2nd ed. San Francisco, CA: Morgan Kaufmann Publishers,

much that can be done to alleviate this situation. Note that 1996.

592 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

[9] KSR Parallel Programming Guide.Waltham, MA, Kendall Square
Research Corporation, Feb. 1992.

[10] CMMD Reference Manual. Cambridge, MA, Thinking Machines Cor-
poration, v. 3.0, May 1993.

[11] Network Programming Guide.Mountain View, CA, Sun Microsys-
tems, Inc., Revision B, Mar. 1993.

Barry S. Perlman (M'65-SM'71-F'86) received
the B.E.E. degree in electrical engineering, College
of the City University of New York, New York,

in 1961, and the M.S.E.E. and Ph.D. degrees in
electrophysics from the Polytechnic Institute of New
York, in 1964 and 1973, respectively.

He is Chief, RF & Electronics Division, U.S.
Army Research Laboratory, Sensors and Electron
Devices Directorate (ARL/SEDD), Adelphi, MD,
and Ft. Monmouth, NJ. He is responsible for ba-
sic and applied research and exploratory devel-

opment in RF sensing and advanced electronic device technologies. He

directs technical programs in ultra-wide-band radar, millimeter-wave imaging,

microwave/millimeter-wave technology, phenomenology, architectures and al-
David L. Rhodes (S'80-M'80) received the B.S.E.E degree from Rutgergorithms, electronic materials, devices and monolithic circuits, electrophysics
University, New Brunswick, NJ, in 1980, and the M.S.E.E. degree frorand modeling, high-speed/power devices, vacuum electronics, frequency-
Princeton University, Princeton, NJ, in 1982, while working at RCA Laboraeontrol devices, and technologies for signal generation, transmission, reception
tories, David Sarnoff Research Center, Princeton, NJ. He is now pursuingantrol, and processing. Prior to his current position, he was Director,
Ph.D. in electrical engineering/computer engineering at Princeton UniversiBlectronics Division for the Physical Sciences Directorate of ARL and prior to

He joined RCA Laboratories in June of 1980, working in the Microwav¢hat, Head, Design Research, Microwave Laboratory, David Sarnoff Research
Division. He primarily worked on CAD for microwave applications includingCenter (formerly RCA Laboratories) in Princeton, NJ. He holds four U.S.
the areas of simulation, optimization, data visualization, and statistical desjggitents and has published more than 70 technical papers.
techniques. He is now Branch Chief of the Solid State Electronics Branch ofDr. Perlman is a member of Sigma Xi, and a Registered Professional
the Sensors and Electronics Directorate (SED) of the Army Research Lalmgineer in the State of New York. He is a contributing member to the MTT
ratory (ARL), Fort Monmouth, NJ. He was chair of IEEE SCC-2Malog AdCom where he serves as Chairman of the Intersocietal Liaison Committee
HDLs, until October 1996 and is working on or directing efforts in the areasnd an active member of the Technical Program Committee. He serves as
of hardware/software co-design, parallel simulation, meta-modeling/statistiea Army representative to the Advisory Group on Electron Devices (AGED)
design, active device modeling, and analog HDL's. He was tri-servi@gnd the DoD JDL/Reliance Sub Panel on RF Technology. He is a member
Leader of the Computational Electronics and Nanoelectronics area of thifethe Army’s Electronic Coordinating Committee (ECOG), the Technical
high-performance computing modernization program software initiative froddvisory Committee (TAC) for the URI/High-Frequency Microelectronics
September 1994 until September 1995. He was the Technical Progr@enter, University of Michigan, and the NSF/CAEME policy board at the
Chair for the first and second (1994 and 1995) International Conferendeiversity of Utah. He is also a member of URSI Commission D. He
on Electronic Hardware Description Languages (ICEHDL) (called SHDL ihas received several awards including four RCA Outstanding Engineering
1994). He also serves on the Editorial Board for thiernational Journal of Achievement Awards for research in microwave/millimeter-wave device,
Microwave and Millimeter-Wave Computer-Aided Engineering circuit, and design technology.

